£6L8

NACA TN 2392

|

=i
NATIONAL ADVISORY COMMITTEE (*=j
FOR AERONAUTICS =5

TECHNICAL NOTE 2392

CHARTS GIVING CRITICAL COMPRESSIVE STRESS OF CONTINUOUS
FLAT SHEET DIVIDED INTO PARALLELOGRAM-SHAPED PANEILS
By Roger A. Anderson

Langley Aeronautical Laboratory
Langley Field, Va.

Washington
July 1951 AL B




TECH LIBRARY KAFB, NM

(NIRRT

00k5s72Y4

NATIONAL. ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2392

CHARTS GIVING CRITICAL COMPRESSIVE STRESS OF CONTINUCUS
FLAT SHEET DIVIDED INTO PARALLET,OGRAM-SHAPED PANELS

By Roger A. Anderson
SUMMARY

Charts giving the compressive-buckling-stress coefficients for
sheet panels of a shape occurring in swept-wing plan forms are presented.
The panels are assumed to be a part of a continuous flat sheet divided
by nondeflecting supports ilnto parallelogram-shaped areas. The stability
analysis was performed by the energy method and the results show that,
over & wide range of panel aspect ratio, such panels are decidedly more
stable than equivalent rectangular panels of the same area.

INTRODUCTION

A highly desirable characteristic for high-speed flight is to have
alrcraft outer surfaces that remain free of buckles or waves under all
normal flight conditions. Whether these surfaces remain smooth under
flight loads is determined by the skin thickness and the arrangement
and rigldity of the internal supporting structure to which the skin is
attached. In the past, the supporting structure generally divided the
outer skin into an array of approximately rectangular panels, but
present-day swept- and delta-wing plan forms call attention to the fact
that gkin panels of other shapes such as parallelograms- may occur.

The present paper considers the stablility under compressive stress
of continuous flat sheet divided by nondeflecting supports into an array
of parallelogram-ghaped panels. Wide ranges of panel skewness and aspect
ratio were investigated, and two orientations of the parallelogram-shaped
panels with respect to the direction of the applied stress were con-
sldered. The results of the analysis are presented in the form of charts
of theoretical buckling-stress coefficients as a function of panel skew-
ness and agpect ratio.
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SYMBOLS
mitually perpendicular directions, rectangular
coordinate system
direction parallel to x-direction, skew coordinate system
arbitrary direction, skew coordinate system

skew angle between y- and y'-directions, measured
positive clockwise from y-direction, degrees

panel dimeﬁsion in x- or x'-dlirection

panel dimension in y-direction

panel dimension in y'-direction

panel aspect ratio (a/b)

plate thickness

deflection hormal to plane of plate

plate flexural stiffness

Pgisson's ratio for plate materiasl

general notation for stress

stress acting in x-direction, compression positive

stress acting in y-direction, compression positive

‘ otba 0xtb2
critical-stress coefficients [k = 2 ;5 Ky = 3
b1

2
n2D
o tb2

P

naD

internal bending energy

external work of applied stress
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N,M,p,q,j,myn integers

amm, bmn Fourier coefficlents
DESCRIPTION OF PROELEM

An idealized arrangement of the supporting structure possible for
swept and delta wings is shown in figure 1, wherein a part of a con-
tinuous flat sheet infinite in length and width is shown divided by non-
deflecting supports into an array of parallelogram-shaped panels, of

. which rectangular panels are a special case. TFor the case of rectangu-

lar panels the assumption is usually made that, if the supporting mem-
bers are torsionally weak, the plate bending moments arising during
plate buckling under edge compression stress are negligible at the panel
boundaries and each panel therefore may be treated as an igolated rec-
tangular plate with simply supported edges. Stability dats for such
panels are avallable in standard textbocks, such as reference 1.

When a simply supported rectangular plate in compression is skewed
into the shape of a parallelogram, a certain increase in stabllity due
to the shape change is achleved, as shown by the numerical examples in
reference 2. A further increase in stability is possible when the
skewed penels are part of a continuous sheet because of the restraint
the adjacent sheet panels impose on each other during the formation of
a continuous buckle pattern. The effect of this type of restraint is
illustrated in reference 3 for the case of continuous sheet divided into
square panels subject to shear stress. Restraint due to sheet con-
tinuity would be present in the case of parallelogram-shaped panels
regardless of whether the loading is edge compresslon or shear.

Two orientations of the parallelogram-sheped panels wlith respect
to the principal direction of the compressive stress due to wing bending
are considered in the present paper. The two loeding conditions are:
stress acting paraliel to a set of panel sldes and stress acting perpen-
dicular to a set of panel sides. Both loading conditlons are shown in
figure 1. !

In the analysis the assumption 1s made that the supporting members
are rigid enough to prevent deflection of the sheet at the panel
boundaries but offer no restraint to rotation. A quantitative analysis
of the stiffnesses required of supporting members (ribs, stiffeners,
shear webs, etc.) to prevent deflection around the edges of parallelogram-
shaped sheet panels is beyond the scope of this paper, but indicatilons
are that they would be somewhat higher than the stiffness required to
support equivalent rectangular sheet panels.




L NACA TN 2392

In order to establish a stabllity criterion for the configuration
analyzed, the energy method of analysis is used, and an approximation is
made for the deflection of the plate expressed in skew coordinates (see
appendix A). The deflection function used leads to the exact solution
of the differential equation of equilibrium of the plate loaded in com-
pression for the special case of rectangular panels and also for the
special case of equal-sided panels of arbitrary skewness subjected to
compresslve loading perpendicular to one set of sides. The accuracy
of the rest of the data is indicated, where feasible, by comparison
with the results of more accurate energy solutions, which are given in
appendix B.

RESULTS AND DISCUSSION

The critical compressive stress for parallelogram-shaped plates may
be given by the formula used for rectangular plates

- <D
Gt—k-—bT ‘ .

where the dimension b 1is the perpendicular distance between the sup-
ports alined in the x-direction, as in figure 1. The critical-stress
coefficient k depends on the panel aspect ratio B (defined as a/b),
the direction of the applied compressive stress, and the magnitude of
the skew angle §.

For loading in the x-direction (stress acting parallel to a set of
sides), the chart for ky is given in figure 2. Note should be taken
that, for a given value of B, the buckling coefficients indicated for
each curve are associated with panels of equal area. In order to facili-
tate association of the curves of figure 2 with the geometry of the
panels, figure 3 has been prepared. In this figure, sketches of the
panels of aspect ratios of 1, 2, and 3 are presented along with four of
the curves of figure 2. In each sketch the mode of buckling for the
panel is indicated. Figures 2 and 3 indicate that the stability of the
skewed panels is definitely increased relative to equivalent rectangular
penels of the same area over a wide range of panel aspect ratio. This
increase in stability is due partly to the change in panel shape but is
caused mainly by the restraint imposed on the mode of buckling due to
the presence of adjacent skewed panels. At aspect ratios of 4.5 and
greater, this restraint has largely disappeared and the coefficients
approach the value L.

The curvesg presented in figures 2 and 3 were derived by the energy
method of analysis with the use of an assumed deflection function capable
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of giving an idealized representation of the panel buckling modes. The
buckling coefficients thus obtained represent upper limits to the true
coefficients. In order to evaluate the unconservativeness of the curves
presented In figures 2 and 3, check calculations were made by energy
solutions of greater accuracy. The results of these calculations, which
are helieved to be less than 1 percent unconservative, are indicated by
the circles near the curves in figures 2 and 3. Because of the com-
plexity of the buckle patterms, check calculations over the entire range
of aspect ratio were not feasible to make, but it seems reasonable that
the remaining parts of the curves would show about the same degree of
unconservativeness as in the regions where check calculations were made.
The numerical values of the circles in figures 2 and 3 are listed in
table 1.

For loading in the y-direction (stress acting perpendicular to a
set of sides), the chart for ky is presented in figure 4. These
curves show that a single buckle pattern (characterized by an alternate
in and out buckling from panel to panel) exists throughout the range of
agpect ratio investigated except for the expected change in mode at
aspect ratio 1/f2 for the § = 0° case. Again, the effect of con-
tinuity between panels on the buckling coefficient has largely disap-
peared at aspect ratios of 4.5 and greater. The squares on these curves
indicate the points at which the derived curves pass through the exact
value for the buckling coefficlent, and the results of energy solutions
of high accuracy indicated by the circles are in excellent agreement

with the remaining parts of the derived curves. (See table 1 for numeri-
cal values.)

Under the simultaneous action of compressive stresses in the x- and
y-directions, the critical-stress combinations for a given panel can be
shown by means of an interaction curve. A family of such curves is pre-
sented in figure 5 for an array of equal-sided panels for various angles
of skewness of the panels. It is rather Interesting that for equal-
sided panels the stabllity criterion for a Oy type of stress acting
alone 1s independent of @ and gives a constant value of 4 (exact) for
the buckling coefficient.

The interaction curves for @ = 45° and 60° in figure 5(a) have
been adjusted in the regions where the more accurate energy solutions
showed that the energy solution using an idealized representation of
the buckling modes was unconservative. The relation between the more
accurate check calculations and the approximate solution is shown in
flgure 5(b). The discontinuities in slope of the curves for @ = 45°
and 60° in this figure indicate that several changes in buckling mode

take place in passing from & oy type of stress to & oy tType of stress.

The smooth curves in figure 5(a}, however, were obtained by simply
fairing a curve through the check points of figure 5(b). The numerical
values of the check points are included in table 1.
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CONCLUDING REMARKS

The charts presented show that the stability of flat continuous -
sheet divided by supporting members into skewed panels is definitely
increased in relation to the stablility of equivalent rectangular panels
of equal area over a wide range of panel aspect ratio. This increase
in stability may be attributed partly to the nonrectangular shape of
the panels but is caused mainly by the restraint imposed on the mode of
buckling due to the presence of adjacent skewed panels.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Langley Field, Va., April 5, 1951
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APPENDIX A

APPROXTMATE SOLUTION FOR CRITICAL COMPRESSIVE STRESS OF

FLAT PLATE CONTINUOUS OVER SKEWED SUPPORTS

Congideration of a flat plate supported and loaded as shown in
figure 1 reveals that, for many combinations of plate aspect ratio and
skew angle, a rather complex deflection pattern might be expected when
buckling occurs. The associated plate differential equation of equi-
librium written in skew coordinates (x!',y!') is

b L, L
ahw+2(l+2sin2¢)a ah-hsin¢< a’W>=
dxt ox!? By' oy x‘38y 8x'8y'3

2
_ggfa%f cosh'¢-g%3c 2&5 in2¢—2 2w in¢+aw>

axlz ax7 ay—l ay,2

This equation further indicates that for arbitrary panel dimensions an
exact solution for the deflection w i1s not likely to be found. It is
interesting, however, that for the particular case of equal-sgsided skew
panels under compression stress acting perpendicular to one set of
sides, the familiar deflection function

)

]

written in skew coordinates 1s the exact solution to the differential
equation. The resulting stability criteridn is independent of the skew
angle ¢ and the buckling-stress coefficlent ky is equal to 4, or

4x2D
b2

O'y.‘b =

The points where this solution applies have been noted on the curves of
figure 4. In order to calculate the buckling-stress coefficients for
other panel dimensions, the energy method can be used with an assumed
expression for the plate deflection.
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Cholce of deflection function.- The foregoing example indicates
that, for skewed panels compressed in a direction perpendicular to one
set of sides (y-direction in fig. 1), a single skewed sinusoidal wave
in each panel is a good assumption for a deflection function for panels
of equal or nearly equal sides. This assumption is also made for panels
of larger aspect ratio. For compression loading parellel to one set of
sides (x-direction in fig. 1), however, it is evident that for most of
the range of aspect ratlio, several buckles will form in each panel.

Each panel therefore would contain contours of zero deflection, or nodal
lines, between buckles. Since continuity of deflection and slope must
be preserved at the panel boundaries, the nodal lines mist run continu-
ously across panel boundaries. For example, skewed panels of large
agpect ratio under stress in the x-direction would buckle in such a
manner that a gystem of rather uniformly spaced nodal lines would
develop between buckles and would run continuously in the general direc-
tion of the y-coordinate. This characteristic behavior, ideallzed in
the following sketch,

y ¥
a
—_ L« | ] ! : } L —
l/l 1/
— 1 l ' | |1 : : ' -
IV ARpanty el
-— L 1 /4] N —
S e T
G —— L I !4' i i* I l I/-ﬂ—-—gx
x
el B RN TN G
| l (3| l . ——
—— I T T K ] If I 14 |
—— i el | ! 41’ - | -
¥ +
— "!* } !,%’ | !, 4 ! ! —— X, X!
) a

would be expected for compression in the x-direction whatever the skew
angle or aspect ratio. Dashed lines, such as a-a, represent nodal lines.
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In the sketch, the buckle pattern is represented as being sym-
metrical about a panel midpoint and repeating in every panel. However,
in general, a repetitive buckle pattern can be assumed to take place
in a group of panels of urnknown dimensions Na in the x-direction and
Nb' din the y'-direction, where N and M are integers.

A representation of such a pattern can be bullt up in two steps.
First, zero deflection along all panel boundaries can be provided by
the function -

prx! any!
W, = 8in sin Al
1 Na Mb? (A1)

where the ratios p/N eand ¢/M are integers. For stress in the

y-direction, equation (Al) with fr=1 emd £=1,2,3, ... isa
suitable approximation for the buckle pattern which occurs over a wide
range of panel aspect ratio and skew angle @. Similarly, the buckle
pattern occurring in slightly skewed panels of moderate aspect ratio
under stress in the x-direction is represented by equation (Al) with

§'= 1, 2, 3, . . . and -1, For this special case, the nodal

M
lines a-a in the sketch are parallel to the y'-direction. In orxder to
represent all other orientatlions of the nodal lines a-& and to permit

an arbitrary uniform spacing, w; can be multiplied by some function
such as Wy, where

Jn( , , Na )
= = t— y! A2
wp = cos ——{x i 7 (a2)

The lines along which wp, = O have a slope determined by the

ratio Na/Mb' and a spacing determined by the ratio J/N, where J
1s an integer and may teke on all values 0, 1, 2, 3, . . . .

By multiplying wy; by wo, the desired deflection function

_ prx* qry' n Na
W—Sin‘—N,?-Bin—M—ETCOBI%EX,iﬁy' (A3)

is obtalned. This function is capable of satisfying the idealized
physical characteristics of the buckle pattern for any panel aspect
ratio and skew angle upon proper choice of the integers p, q, N, M,
and 3. Actually, it is necessary to consider only the plus sign in
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equation (A3) under compression loading since the plus-sign case describes
all natural orientations of nodal lines. Another form of equation (A3),
more convenient for calculation purposes, is

1 t ]‘[]{' 1 “xl 4 .
w = sin 2 gin Y (cos J cos Jy - 8in J sin Jﬂ) (Ak)
Na Mb? Na Mb? Na Mb?

»

Energy expression.- The internal energy V of the plate and the
external work T done by the loads, expressed in rectangular coordinates 3
are

o [Te 2N maNE o e (62w>2
i G G R e o)

(A5)

Sl <

Conversion of the energy expression into the skew coordinate system
(x',¥y') is accomplished with the transformation equations

X' = x -y tan §

vyt = J
cos ¢
where the positive dlrectlons of the coordinates are shown in the ’

followlng sketch:
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S

x?

b'd o
In the skew coordinate system, V and T become

1
v - D '\/\Nanb
2cos¢o 0

—

Lcoi2¢[<3x'2> (By' >:|

A\

" 2
E(l—u) +1+tan2¢:<ai?_-w—-> +2(u+tan2¢>ﬁaaw -

x! ay' ax.2 ay_LE
y 8in g 32w /SQW 32w ax dy
cos2p Ox' By'\axt 8y'2
and
. fNa be' ot cos ¢/Bw> oyt cos P Bw) 2¢
B 70 o] 2 \ox! 2 B

ow dw sin ¢

2
2 + /5”’) ax! ay!
dx* dy* cos2P cos ¢\6y'

11

y‘
/ ‘l —

(A7)

(48)




12 NACA TN 2392

As shown in equations (A7) and (A8), the integrations are performed

over a repetitive buckle pattern.

Stability criteria.- By substituting equation (Ak) for w into
. equations (A7) and (A8) and by setting V equal to T, the following

stability criterion 1s obtained:

I 2.2 L 2.2 4
1 1/, b5 J B,2q ¢ 953° J_> .
cosz,zs;é@+ ?T*w)* MR I

2 2 2 2 2
A e P I oy d-sinfl ppe, 3"
2Q2+N%2+M2>(1+3m2¢> hmcos%l;'éN2+N3+

2 2 2 2
LA | [ I - -
B:é > + Mi):l kx cos%ﬁéz + Ne) + ky![<w2 + " in2¢

2 2
J 2(q J
2B'msin¢+B'C—-2+M—Z)

where
T - &
B =Bt
kot = Ux‘bb’e
! = e
72D
and
T

(49)
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A somewhat more convenient form of equation (A9) for computational
purposes 1s obtained if the skewed-plate aspect ratio is defined as
a/b to conform with the usual notation for a rectangular plate of equal

b B!
area. ITf th ubstitution D! = is made, t =
¢ © FUbERIME cos P 8 e, then cos @ Bs

ky! c052¢ = ky, ky’ 0052¢-= ky, and equation (A9) becomes

sl SR B
z@— DE B s (R

):l (5 >+ky6v 2 -

mt&n¢+52—2 ﬂ;) (A10)

The critical values of the buckling-stress coefficients ky and k

are determined by the values of the ratios p/N, J/N, q/M, j/M that
moeke the coefficlents a minimum.

Ir %.: é = 0, which is equivalent to using equation (Al) for a
deflection function, equation (A10) reduces to

1 p? a2\ 2, p2q? o
(B 2¢N2+BI'T§> - kx—z+k 22 tan + p 9‘“ (A11)
cos

This equation is the exact stabillty criterion for a rectangular plate
in compression when ¢ is set equal to zero. The curves of buckling
coefficient plotted agaeinst aspect ratio for stress in the y-direction
in figure L4 were computed from equation (All) by setting ky = O. Over
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the range of aspect ratio covered, the lowest buckling coefficlents were

“associated with the parameters ﬁ' = % = 1, except for the part of the

curve for ¢ = 0° in the region ﬁ;~< B-<-jg for which the buckle pat-
(& 2

tern is defined by 1% =1, 3.2 -

1
cos §
and for % = % =1 and ky = 0, equation (All) reduces to

For the special case B = » Which specifies equal-sided panels,

B(1 + sin®f) = ky(1 + sin2p)
or

ky = b

This result is the one obtained previously by substituting
4 b 4
w = s8in Eg— sin E%— into the plate differentlial equation.

A determination of the buckling-stress coefficients for stress in
the x-direction from equation (A10) may be made when a buckle pattern
has been specified by the parameters p/N, J/N, q/M, and Jj/M. For
a given panel shape, several buckle patterns must be investigated to
determine the pattern associated with the lowest buckling-stress coef-
ficient. The minimum computed coefficlents thus obtalned are plotted
in figure 2, and the parameters p/N, J/N, q/M, and J/M defining
the buckle pattern in each part of these curves are tabulated in table 2.
From the table, the data for @ = 45° and B = 3.2 were used to sketch
the buckle pattern shown in a previous section "Choice of deflection
function.” Similarly, the buckle pattern associated with any other
panel configuration covered in figure 2 can be sketched by substituting
the appropriate parameters from table 2 into the general deflection
function, equation (A3). This procedure was followed in preparing

figure 3.

The interaction curves in figure 5 were derived by trial-and-error
solution of equation (A10) by the process explained in the previous
paragraph. The parameters defining the buckle pattern in each segment
of these curves are tabulated in table 3.
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APPENDIX B

MORE ACCURATE SOLUTION FOR CRITICAIL COMPRESSIVE STRESS OF

FLAT PLATE CONTINUOUS OVER SKEWED SUPPORTS

The results obtained in appendix A serve ag a useful guide in
maeking a more accurate energy solution for the critical stresses
because the basic characteristics of the mode of buckling for a number
of skewed panel configurations have been determined. These data are
given in tables 2 and 3. A study reveals that a number of the buckle
patterns can be classified rather simply as being either symmetrical
or antisymmetrical about the midpoint of each panel and repeatlng in
each panel or over two panels. The solutions In this appendix are
confined to these cases. Representation of such patterns 1s feasible
with. two-dimensional sine and cosine series and permits an energy
solution for the critical stresses to an arbitrarily high degree of

accuracy. The critical stresses thus obtained provide a check on the
results in appendix A.

Deflection functions.- The trigonometric series representing the
deflection were chosen to satisfy term by term the required conditions
of zero deflection around the panel boundaries and continuity of slope

between panels. The four buckling configurations Investigated are as
follows:

’

Symmetric buckling, periodic over a, D',

(-] 00
_ :E ; mrx' nmy'!
W= 8pn 8in —— sin e +
n=2,4,6 n=2,4,6

(Bla)
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Symmetric buckling, periodic over 2a, 2b!,

00

W= Z Z anmsinm'sinnﬂy,

n=1,3,5 n=1, 3,5 b!

. . '
E bmn cog_(_ni_—_ai)_jo.{__
m=2,4,6 n=2

+

'bl

(m + l):tx:][ (n - l)n'y' - cos (n + 1)my?

Antisymmetric buckling, periodic over a, 2b?,

[} o«
1 1
W D 2 g ein B g DU,
m=2,4,6 n=1,3,5 & b?

by | cos (m - Dmet
m=1,3,5 n=2,k,6 a

. (m + l)atxj Eos (n - Dy cos (n + l)nyj
a bt b?

Antigymmetric buckling, periodic over 2a, ©b!,

W= Z Z ayn sin ,sinnﬁy'+
m=1,3,5 n=2,k4,6 b!

(m - 1)mxt
bmn cog —o——"—— -
n=2,%,6 n=1,3,5 &

g {m + l}mcjl}os (n - V)myt _ §n + l)ﬂ]
a bt

(B1b)

(Blc)

(B14)
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on of thege daeflection functions into the energy expressione (equatiods (A7) and

leads to the deaired stabillty equations.

) T
Symnetric buckling, periodic over &, b'.- Por symmetric buckling, periodic over a, D',
the infinite set of stability Equa.w.uun dGIi’vE’J. from function {n-"" 1s

R 3 - - . N L I W X g Tl m2 |-.Q E \-I-n'n
= emban + 4 [b(ne1) (ne1) = D(mel) (n-1) - P(w1)(ae1) ¥ P(w-1)(o-L\googzg * 2P "2 Ky F

(m=2 4 6, ...){n=2, 4, 6, .. .) (B2e)

- W m L \ I_m+1\ af. .12 B 1__I_|.-_ U AN - l_l+l) Al 2 g 1__-';.._ r
0 = Popbn T4(D+ (m+l) (n+1)l:"-“$ PALT L} =T Ry pT oMY "'(m-i-l)( l)WT pii- =% ﬂzj'-ﬂ-" ¥
' 2 2
km-1)(n+ l)a.r,. 1\.‘-;1\]_-("—“]—';’;—_ +ﬂ(n+1)2-E l.—.Itm ﬁ'i'h-(m-l)(n-l)ﬂ-!w-_1\{5:1\lj(-—_—‘1!r-_'+._ﬂ(ll~ 1)2-2 k]ta.n gma:.rmg\,;h.*' 2'."1+
\"""'ILP CQ’* = _, =N ""ILE Cﬂl* = J_l “‘“\""_'-ILBHlei»ﬂ

pAn-1)4+2(1+3 meﬁ)(n 1)%(»2 +1) - (Xz+ ky tan?$) (22 +1) ~ pRy(n - 1)_I wma){ﬁ—%ﬁhﬁa(nuﬁwaus g (n +1)2(xR+1) -

{Ex +Xy tan2P)(n2+1) - Bak.!(n-i-l)] -Eb(._z)nH+ﬂa(n +60%+1) +2(1+3 tan$)(m-1)8(n2+1) - (ky +xy tan?¥)(m- 1)2-55;,(n2+1]

a(mg)ng-gu—%+ pA(n'+ 602+ 1) + 2(1+ 3 tan®p)(m+1)%(n2+1) - (i + ky tanp) (n+1)2- py(n®+ JEI + B(p-p) (n_e)&éﬁiﬁe(n TN
2(1+3 'hnneﬁs)(mul)a(n-l)a- (kg + ky tnneﬂ)(n-l)e-ﬂehg(nnl)j+h(m2)(m)|éﬁ)%+ﬂa(n+l)h+2(l+3 tan®3) (m+ 1)8(n+1)2 .

| ~— ' by
(kx +Xky hnaﬁ)(n+1)e- ﬂaky(n +l)"i| +b(y p) (nh?)lén;-lﬁ+ ﬁe(n+l)~'+2(1+3 ta.naﬁ)(l-l)afn-rl)a- (kx + %y tanf$) (n ~-1)2 -ﬂety(n+ 1)j+
b(m)(n_a),élai';ul&;-+ﬂe(n-1)h+2(l+ 3 ta88) (m+ 1)%(a - 1)2 - (kg +Xy tmn2) (m+1)2 -8y (n - 1)j

(.-"'3: 5 Ty » -)(5'31 S5 Ty « -) (Mb)

2688 ML Vovi
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O = b1pnBin - 8(n - 1)8'2(]1—1)[:
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L 2
B‘coseﬂs+ﬁ(n- Y -%k_;_]tan¢+

+

2cosltp

B cos

8(n + 1)32(n+1)[ + B(n + 1)2 - %ky ten 8 - bl(n-i-2)|:B 16

362 + 1)* + 8(1 + 3 tan®P) (n + 1)2 - b(ky + ky tan®p) -

cOos

352"y(n * 1)E| = P1(n-2) l;zm g + 38%a - 1)1‘ +

8(1 + 3 tan?f)(n - 1)2 - (kg + ky tanf) - 3B2ky(n - 1)% -

2b3n[: 16 . 82(nt + 602 + 1) + 8(1 + 3 tan2p)(n? + 1) -
Bacosu¢

b(ky + ky tan@) - B2ky(n2 + 1{] + b3(n+2)l;—2-}é—%- + B30 + 1)1’ +
cos

8(1 + 3 tan®f) (n + 1)% - Wiy + ky tan®P) - pky(n + 1)2:, +

b3(n-2)|:"2'l‘6T + 82 - VY + 81 + 3 tan®h)(n - 1)2 -
B cos @

(ky + ky tan®@) - gk (n - 1)%!

n=35 17 .. .) (B2)
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)2 B
+1+B-§kyta.n¢+

0 = BBy - 8(m - l)a'(m-l)EEm -

B cos

L

1682 + 8(1 + 3 tan2)(m - 1)2 - 3(ky + ky tan?f)(m - 1)° - %%{l i,

b(m+2)llzﬂﬁ%¢ﬁ + 1682 + 8(1 + 3 tan2p) (m + 1)2 -

Bos

2
3(ky +kytan2¢)(m+l) -hak;l +6m+l+l6B2+
Bcosuyﬂ

8(1 + 3 tanP) (m? + 1) - (ky + ky tan?p)(n® + 1) - hszkgl +

os

(m+2)3lf_m—t_%_)— + 1682 + 8(L + 3 tan2g) (m + l)
2¢

(kx + ky tan2f)(m + 1)° - bp k;l + (.03 é—%L + 168 +
CO

8(1+ 3 ta.n2¢)(m - l)2 - (kx + ky tan®g) (m - 1)2 - hﬂekb]

(m=3,5 7, ...) (B2d)
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b B 4 2

0 = by,B,7 + 16a + 4 -5k \tan § - kb + 128° +
1L 22<E cos2p 2 kﬁ> l3ljﬁ2cosl"¢

8(1 + 3 tan®p) - (kx + ky tan®p) - 3;321;;, - kbgy TIET- + 4p2 4
3 BScos P

8(1 + 3 tan®f) - 3(ky + ky tan?p) - poky | + kb r__T” + g2 4
* 33_Bzcos 1)

8(1 + 3 tan®P) - (ky + ky tan®f) - B%{I (B2e)

where

Am = mt + nt*p2 + 2m2n2(1 + 3 tan2p) - m2(ky + ky tan®p) - n2pfky

Bzcosh}ﬂ

= bt + 6 + 1) + lpjsg(nl+ + 6n2 + 1) +

P Bgcoshﬁé

8(1 + 3 tan®p) (m2 + 1)(n2 + 1) -

h(ky + ky tan?f) (m? + 1) - kg% (? + 1) ,
Bip = —232—— + 6p2(nk + 6n2 + 1).+ 16(1 + 3 tan2p) (n2 + 1) -

Bzcoshgé

8(ky + ky tan®p) - 68%%y(nZ + 1)
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6(m + 6m2 + 1)

+ 3282 + 16(1 + 3 tan2f)(m2 + 1) -
B2c05h¢

By =
6(ky + ky tan?p) (n? + 1) - 8%,

48
Byy = ——p + 48p% + 32(1 + 3 tan®p) - 12(ky + ky tan2f) - 128%,

B-cos

The stability criterion is obtained by equating to zero the determinant
formed by the coefficlents of apy &and bmy in equations (B2). The

numerical results calculated from this set of equations may be found in
table 1. In each case four of each of the coefficlents apn and bppy,

which gave an eighﬁh-order determinant, were used in the calculations to
ingsure an adequate representation of the buckle pattern.

Symmetric buckling, periodic over 2a, 2Zb'.- For symmetric
buckling, periodic over 2a and 2Zb', the infinite set of stabllity
equations derived from the function (Blb) is the same as that derived
from the function (Bla) except for a change in the values of m and n
involved. For the buckle pattern now under consideration, equations (B2a)
exigt for m=1, 3, 5, . .. and n=1, 3,5, ... . Similarly, equa-
tions (B2b) exist for m=2, 4, . . . and n =2,k . . ., and equa-
tions (B2c), (B21), and (B2e) do not exist. Note should be taken that
coefficients with the subscripts m -1 and n - 1 1in equations (B2a)
drop out for m =n = 1 since coefficients with a zero subscript do not
appear in the deflection function (Blb). For the same reason coefficlents
with the subscripts m - 2 and n - 2 ghould be dropped from equa-
tions (B2b) for m=n = 2,

The numerical results calculated for certain panel configurations,
in which & symmetrical buckle pattern repeating over 2a and 2b' 1is
agsociated with the lowest buckling load, are given in table 1. For the
panels in which @ = 30° and 45°, four equations involving ajq, 213)

a31, and boo were employed in the calculations. For the panels of

60° skew, four of each of the coefficients apy, &and by, were required
to provide an adequate representation of the buckle pattern‘

Antigymmetric buckling, periodic over a, 2b'.- For antlgymmetric
buckling, periodic over a and 2b', the infinite set of stability equa-
tions derived from the function (Blc) mey be written directly from
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equations (B2a) to (B2c). For this buckle pattern, equations (B2a)

exist for m =2, 4, 6, . . . and n =1, 3, 5, « . .3 equations (B2b)
exist for m=3,5, 7, . .. and n=2, 4, 6, . . .; equations (B2c)
exist for n=2, 4, 6, . . .; and equations (Bad) and (B2e) do not exist.
The buckling coefficient ky for loading in the x-direction was calcu-
lated for the panel configuration $ = 60°, B = 3 for which this buckle
pattern applies, and a value ky = 6.95 was obtained. This result was
obtained when four a's and four b's were used in the deflection
series (Blc).

wonon

Antigymmetric buckling, periodic over 2a, b'.- For antisymmetric
buckling, periodic over 2a and b', the infinite set of stability
equations derived from the function (Bld) may be written directly from
equations (B2a) to (B2d). For this buckle pattern, equations (B2a)

exist for m=1, 3,5, ... and n=2, 4, 6, . . .; equations (B2b)
exist for m=2, 4, 6, . . . and n=3,5, 7, . . .; equations (B2c)
do not exist; equations (B2d) exist for m =2, 4, 6, . . .; and equa=

tion (B2e) does not exist.

Calculations were carried out for § =.60° B = 1.2, a panel
configuration for which this buckle pattern applies. An adequate
representation of the deflection was obtained when four a's and
four b's were used in the deflection series (Bld) which gave a value
of ky = 16.22.

As was pointed out in the beginning of this appendix, these more
accurate solutions were carried out only for those panels for which the
mode of buckling was relatively simple and clearly indicated by the
results of appendix A. In the absence of such information it would be
necessary to investlgate all concelvable modes of buckling for a given
panel configuration.
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TABLE 1.- CRITICAL COMBINATIONS OF ox AND oy

NACA TN 2392

TYPES OF STRESS ACTING

ON CONTINUOUS FLAT SHEET DIVIDED INTO PARALILELOGRAM-SHAPED PANELS

(DATA FOR CIRCIES IN FIGS. 2 TO 5)

_ k®, gt = kyna):l
b2 b2
Stress combination Buckle pattern

P kx ky Sy??ﬁtry Periodicity

g = 30°
0.5 0 19.33 8 2a bt
5TT 9.60 0 S "2a 2b?
1.0 6.7h 0 S 2a, Zb?
1.155 6.62 0 S 2n, bt
1.155 0 4 S 2a Sht
3.0 o 1.5 8 2n, bt

. g = 45°
0.5 2h.12 0 S 2a bt
.6 0 14.32 S 28 2ht
1.0 0 6.499 s on Zpt
1.0 11.46 0] s a Bt
1.1k 0 L s 2n Zh?
1.hk 5.99 2 S 2a 2h!?
1.hk T.46 1 s a b
2.0 6.36 o} A-S 2a B!
3.0 5.11 0 8 a bt
3.0 0 1.7s 8 2a Zh?

g = 60°
0:6 0 19.28 8 2a Sb?
1.0 0 9.25 S 2a Sp!
1.2 16.22 0 A-S 28, bt
1.6 12.32 0 S a bt
2.0 0 4 8 2a ot
2.0 k.0 3.43 8 2a 2bt
2.0 T.14 2 S 2a bt
2.0 7.97 1 38 a bt
2.0 8.75 0 ] a bt
3.0 6.95 0 A-8S a op!
3.0 0 2.56 [ 2a bt

15 - symmetrical about panel midpoint

A-8 - antisymmetrical about panel midpoint.
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TARLE 2.~ DATA DEFINING THE BUCELING MCDES IN FIGURES 2 AND 3

E%Mﬂmdﬂfmﬂmnv-sm

& oJY -
- — — sFaE
& O — QN st
— (o]
o)
oy
]
W alAdAddAAA
=
S~ A
&
= ~ =
= SO0 0 oSNNS Mt Mmool o
— [ B B | .
B =1
= OO0 Mt 0O I
- | o, o
o 3
. ] 1
Sl [AAAddl e A A A A A
w H N A A AA A A A~ A
= A2
< 0CO0O00OoO Ordd A~ -
o~ . =
B m o o
Co00C0QO0O O s O QU
.3 ) 0
= mu m?
S e e e e e e I e R e e R e
-, t
-,
m — & o Nt o H A
"
@ SWINO N WoaNt@AINA A
— 0l M o HAAdMN A

25




NACA TN 2392

26

TABLE 3.- DATA DEFINING THE ZéUCKLING MODES IN FIGURE 5
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i O Results of energy solutions of higher accuracy
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Filgure 2.- Theoretical buckling stresses for perallelogram-shaped panels
for stress acting parallel to a set of sides.
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° Results of energy solutions of higher accuracy
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Figure 3.~ Illustration of the variation in panel stability with changes
in panel geometry. (Idealization of buckling mode shown in each panel.)
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O Results of energy solutions of higher accuracy
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Figure L.~ Theoretical buckling stresses for parallelogrem-shaped panels
for stress acting perpendicular to a set of sides.

o€

26L2 NI VOVH



NACA TN 2392 31

0,

' y
SRRARREARE

L

2 —_ —
T o7 7=
m Dz ox V/ =~ 9%
_Oytb LT =
0 Sk
D ®,deg

bhEtbettttt

y

(a) Adjusted interaction curves.

o} Results of energy solutions of higher accuracy for

g ¢ of 30, 45, and 60, respectively

o Exact solution to plate differential equation

(b) Comparison of various solutions.

Figure 5.~ Stability of equal-sided skew panels under simultaneous action
of stresses in x- and y-directions.
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